A New Algorithm for Inexact Graph Matching*

Adel HLAOUI and Shengrui WANG
Université de Sherbrooke, Faculté des Sciences / DMI
Sherbrooke, Québec, JIK2R1, Canada
{hlaoui, wang}@dmi.usherb.ca

Abstract

The graph is an essential data structure for
representing relational information. When graphs are
used to represent objects, comparing objects amounts to
graph matching. Inexact graph matching is the process of
finding the best possible matching between two graphs
when exact matching is impossible. In this paper, we
propose a new algorithm for the inexact matching
problem. The new algorithm decomposes the matching
processinto K phases, where the value of K ranges from 1
to the minimum of the numbers of nodes in the two graphs
to be matched. The efficiency of the new algorithm results
from the use of small values of K, significantly reducing
the search space while still producing very good
matchings (most of them optimal) between graphs. The
algorithm is compared with the error-correcting
subgraph isomor phism algorithm based on A*.

1. Introduction

The graph is one of the most important data structures
in pattern recognition research. It is an essential structure
for representing relational information. In our research,
we are interested in using graphs to represent image
content. Our goal is to develop efficient algorithms for
indexing and retrieving images based on their graph
representations. One basic requirement for achieving this
god is an efficient graph matching algorithm in order to
evaluate the similarity between graphs. A well-known
procedure for inexact graph matching, called the error-
correcting subgraph isomorphism algorithm, is given
in[1],[2]. The agorithm is based on the A* method and is
able to find the best matching by exploring only the most
promising avenues. However, the agorithm runs into
combinatory explosion when the size of the graphs
becomes large (e.g. over 10 nodes). Another well-known
agorithm, reported by Ullman[4], utilizes the
backtracking technique with forward checking. Ullman’s
algorithm also suffers from the combinatory explosion
problem and is appropriate only for exact graph matching.
Finally, graph matching is usually applied to two graphs at

1

The completion of this research was made possible
thanks to Bell Canada’s support through its Bell
University Laboratories R & D program.

a time. Bunke and Messmer [5] proposed a new approach
to solve the graph matching problem for a graph database.
It involves decomposing the graph into subgraphs. A
subgraph which appears multiple times will be compared
only once to the input graph.[3],[5].

In this paper, we propose a new graph matching
algorithm for computing the similarity between graphs. In
the new algorithm, we make use of the similarity matrix as
defined in Ullman’s algorithm. The similarity matrix plays
an important role in selecting match candidates. Like the
error-correcting algorithm, the new algorithm is designed
to perform inexact matching. Edit operations similar to
those in Bunke-Messmer’s algorithm are used.

With this new algorithm, we have proposed an efficient
way to explore the best potential matchings, thus
significantly reducing computation time relative to the
error-correcting subgraph isomorphism algorithm based
on A*, without any significant loss in matching results.
The outline of this paper is as follows. In Section 2, we
describe the error-correcting subgraph isomorphism
algorithm based on A*. In Section 3, we introduce our
algorithm and present experimental results to demonstrate
the performance of the new algorithm. Finally, Section 4
concludes this report.

2. The error-correcting
isomor phism algorithm based on A*

subgraph

In this work, we consider graphs made up of labeled
nodes and edges. A graph contains a set of nodes and a set
of relations between nodes called edges. Mathematically,
a graph is represented by a 4-tuple G=(V,E,u,v),

where V is a set of nodes, E is a set of edges, W1 is a
function assigning labels to nodes and v is a function
assigning labels to edges. Classical algorithms for graph
matching employ the concepts of graph and subgraph
isomorphisms. A graph isomorphism is any bijection
which transforms a graph G; into another graph G,, and
vice versa. If such a function exists, the two graphs are
isomorphic; in other words, the two graphs are considered
to be the same. If one of the graphs is larger than the

other, then the matching process is performed by looking
for subgraph isomorphisms. Given two graphs G, and G,
finding a subgraph isomorphism involves finding a
subgraph Gs of G,, such that G; and G; are isomorphic.
Finaly, in practical applications, objects and the
relationships between them are often affected by noise and
distortion, making it impossible to match the objects. In
such cases, the concept of error-correcting is called for.
Error-correcting involves finding isomorphisms between
two graphs by using edit operations, such as insertion,
deletion or substitution of both nodes and edges, to
transform one graph into the other.

Classical error-correcting subgraph isomorphism
methods [1],[2] use particular versions of the A* search
procedure to find the best matching. These methods are
guaranteed to find the optimal matching, but require
exponential time due to the NP-completeness of the
problem. A brief analysis [5] of the algorithm’s
complexity shows that in the best case, the algorithm
needs oO(n?m)steps to find the optimal matching.

However, in the worst case, O(n ?m") steps are needed to

find the optimal matching. For this reason, algorithms of
this kind are not suitable for larger graphs. Nevertheless,
the error-correcting subgraph isomorphism algorithm
based on A* is still among the most efficient, and is
widely used by many researchers to solve the problem of
graph matching. In order to reduce time and complexity,
they incorporate various heuristic look-ahead techniques
which are often application-dependent.

The error-correcting subgraph isomorphism algorithm
based on A* [1],[2] belongs to the class of optimal
algorithms; that is, it is guaranteed to find the optimal
subgraph isomorphisms. The new algorithm proposed in
this paper is application-independent, in that it does not
require the use of heuristics. It can be used to find the
optimal subgraph isomorphisms. However, its major
strength resides in its capacity to find good (usually
optimal) matchings in a short time. In this sense, it can be
categorized in the class of approximate algorithms.

3. The new matching algorithm

In this section, we present a new algorithm for the
graph-matching problem[6]. Given two graphs, the goal is
to find the best matching between their nodes that leads to
the smallest matching error. This smallest error between
the two graphs can be viewed as the distance between
them. To compute this error, we must compute the
dissimilarity between each pair of matched nodes, plus the
dissimilarity between (corresponding) edges. The goal is
to find the mapping that results in the smallest error.

The basic idea of the new algorithm is iterative
exploration of the best possible node mappings and
selection of the best mapping at each iteration phase. The

advantage of this algorithm is that the iterative process
can often find the optimal mapping within a few iterations
(for instance 5), significantly reducing the run time. In the
first phase, the algorithm selects the best possible
mapping(s) that minimize the matching error due to nodes
only. Of these mappings, those that also give the smallest
error in terms of edge matching are retained. In the second
phase, the algorithm examines the mappings that contain
at least one second-best mapping between nodes and then
again computes those mappings that give rise to the
smallest error in terms of edge matching. This process
continues through a predefined number of phases.

3.1. Algorithm description

We suppose that distance measures associated with the
basic graph edit operations have been defined; i.e. costs
have already been associated with substitution of nodes
and edges, deletion of nodes and edges, etc. The technique
proposed here is inspired by both Ullman’s algorithm and
the error-correcting subgraph isomorphism procedure.
The new algorithm is designed for substitution operations
only. It can easily be extended to deal with deletion and
insertion operations by considering some special cases.
For example, deletion of a node can be performed by
matching the node to a special (hon)node. The algorithm
is designed to find a graph isomorphism when both graphs
have the same number of nodes and a subgraph
isomorphism when one has fewer nodes than the other.

Given two graphs G, =(Vy,E,14,vy) and
G, =(V,,Ey, 4y,v,), in order to detect the most
promising mappings, a nxmmatrix P=(p;) is
introduced, where n and mare the numbers of nodes in the
first and the second graph, respectively. Each element
p, in P denotes the dissimilarity between node i in G, and

node j in G, In order to detect the most promising
mapping, we use a second nxm matrix B=(b;). The

first step is to initialize matrix P by setting
P;j=d(24 (%), 42(V;)) . The second step then consists of

initializing matrix B by setting b;=0. In order to detect

the promising mappings, the algorithm first sets some
elements of B to 1. Specifically, for each row in matrix B,
the elements corresponding to the minimum elements in
the same row of matrix P are set to 1, (; =1) . Then, for

each possible mapping extracted from B, the algorithm
computes the error generated by nodes and the error
generated by edges. The mapping that gives the smallest
matching error will be recorded. This is the first phase
(Current _ Phase =1) of the algorithm.

In the second phase (Current_Phase=2), the
algorithm will reset some elements in each row of matrix

B to zero. These elements correspond to the second-
smallest elements in each row of matrix P. The algorithm
will extract those isomorphisms from matrix B that
contain at least one node-to-node matching added to
metrix B at this phase. Of these isomorphisms and the
isomorphisms obtained in the first phase, those with the
smallest cost are retained. The algorithm then proceeds to
the next phase, (Current_Phase=3), and so on.

A direct implementation of the above ideas would
result in redundant extraction and testing of
isomorphisms, since any matching extracted from matrix
B a a given time will aso be extracted from any
subsequent matrix B. To solve this problem, a smart
procedure has been designed. First, matrix B’ is
introduced to keep a copy of all possible node-to-node
matchings that have been considered by the algorithm so
far. B is used as a ‘temporary’ matrix. At each phase
(except the first), each of the n rows of B is examined
successively. For each row i of B, all of the previous rows
of B will contain all of the possible node-to-node
matchings examined so far. Row i contains only the
possible node-to-node matching in the present phase.
Finally, all of the following rows of B will contain only
the possible node-to-node matchings examined in the
previous phases. Such a matrix B guarantees that the
isomorphisms extracted as the algorithm progresses will
never be the same and that all of the isomorphisms that
need to be extracted at each phase will indeed be
extracted.

A Simple Example. Two graphs G; and G, are shown
in Figure 1. In this figure, the numbers inside the circles
denotes the node labels and the numbers near the
connecting lines denote the edge labels. The
corresponding matrices P and B are shown in Table 1 and
Table 2, respectively.

1 2 1 0272

Gy

Figure 1. Two graphs G, and G,

0.2 0 0.3
0.4 0.2 0.1
Table 1. Matrix P
0 1 0
0 0 1

Table 2. Matrix B/ Phase 1

From the matrix in Table 2, the following matching
(lc,2c0) and (2¢1,3c2) Will be extracted and further
examined.
At phase 2, matrix B’ will contain
1 1 0
0 1 1
Table 3. Matrix B’ Phase 2

while the extraction process uses only the following

metrices
1 0 0
0 0 1
Table 4. Matrix B Step1/Phase 2
1 1 0
0 1 0

Table 5. Matrix B Step2/Phase 2
Thus there will never be redundant extraction of
possible matchings. As the second matching (1c1,252) and
(261,2c2) is not bijective, only the first matching will be
considered. The Matching_Nodes process is applied only
for avalid matching which has a bijective mappings.

3.2. Algorithm and Complexity

Input: two attributed graphs G; and G, .
Output: matching between nodes in G; and G,, from the
smaller graph (e.g., G,) to the larger (e.g., Gy)

1. [Initialize P asfollows:
For each pij Set pijzd(ﬂl(vi):,uz(vj) -
2. Initialize B asfollows:
For each by i=1.,nand j=1..m,set b=0.
3. While Current_ Phase< K
If Current _Phase=1,
Then foral i =1...,n
select the element with the smallest value
in P that isnot marked 1in B and setitto 1
inB;
call Matching_Nodes(B).
Elseforal i =1,...,n
st B =B
foral j=1..,m set b, =0
select the element with the smallest
valuein P that isnot marked 1 in B’
and setittolinBandB’;
call Matching_Nodes(B);
swt B=B .
If all elements in B are marked 1,
Then set Current_ Phase=K

Else add 1 to Current_Phase.
Matching_Nodes(B)
For each valid mapping in B
. Compute the matching error generated by nodes.
2. Add the error generated by the corresponding edges
to the matching error.
3. Save the actual matching if the matching error is
minimal.
The complexity of the algorithm depends on the
number of phases K. For a given K, to find the best

matching we need o(n2K ") steps, where n is the number

of nodes in the smaller graph. Details of the deduction are
givenin [6].

4. Comparison with the error-correcting
subgraph isomor phism algorithm

From a theoretical point of view, it is clear that the
error-correcting subgraph isomorphism algorithm needs
more steps to find the optimal matching than the new
agorithm. The number of steps is reduced by
(m/K)"when the new algorithm is performed.

In order to study the behaviour of the new algorithm in
practice, we performed a number of experiments with
randomly generated graphs. Comparisons were made with
the error-correcting (ec) subgraph isomorphism algorithm
based on A*[1],[2]. We generated 1000 pairs of graphs.
Each graph was randomly assigned a number of nodes
between 2 and 10. Each node and edge was randomly
assigned a label value between O and 1. The new
algorithm was tested with K varying from 1 to 5. The
following indicators were used in the comparison: the
average (accumulated) time needed by the new algorithm
for each given number of phases, the number of optimal
meatchings found for each given number of phases and the
average time needed by the error-correcting algorithm
based on A* to compute the optima matching. The
experiments were performed on a SUN workstation, Ultra
60, with two 450 MHz CPUs and 512Mb internal
memory.

Number of phasesK | Optimal matchings | Average time
reached by the| inseconds
proposed agorithm

1 609 2.14
2 827 3.69
3 940 6.14
4 971 11.04
5 1000 16.28
Error correcting(A*) 1000 186.57

Table 6. Comparison between the two algorithms.

Table 6 shows the performance of both the proposed
agorithm and the error-correcting subgraph isomorphism
agorithm based on A*. For the new agorithm, it is
normal to find that the average time needed to detect the
best matching increases with the number of phases. The
number of optimal matchings also increases significantly
with the number of phases. For this set of random graphs,
the optimal matching is found for every pair of graphs
when K=5. On the other hand, the error-correcting
agorithm based on A* requires much more time than the
new agorithm. We believe that the gain of the new

algorithm in terms of execution time is due to its process
of searching for the most promising candidates and to the
subroutine for the extraction of node-to-node mappings
(candidates).

A* is a state-space search agorithm. The number of
states expanded by the agorithm grows significantly
rapidly in the case of larger graphs. The algorithm is
appropriate only for small graphs. In genera, it cannot
handle complete graphs with more than 10 nodes. In
contrast, our algorithm can easily deal with graphs whose
sizes exceed 10 nodes: Table 7 shows the time needed to
find the best matching with K=5.

Size 8x12 | 10x15 | 13x18
Time in seconds 39 761 1345
Table 7. Time needed to find the best matching.

5. Conclusion

This paper has presented a hew subgraph isomorphism
algorithm which proposes a novel approach to the search
for the best matching between two graphs. The search
process is decomposed into K phases. The promising
mappings in each phase are extracted and their matching
errors are computed. The concept of the edit operation is
used to compute the matching error. The new agorithm
was compared with the error-correcting algorithm based
on A*. Decomposition of the search process into phases
allows it to find a high percentage of the optimal
matchings in a smal number of phases, considerably
reducing the execution time. This algorithm is being
applied to a content-based image retrieval system.

6. References

[1] W.H. Tsai and K.S. Fu. Error-Correcting Isomorphisms of
Attributed Relational Graphs for Pattern Analysis. |IEEE
Trans. on SMC, vol. 9, no. 12. December 1979..

[2] A. Sanfeliu and K.S. Fu, A Distance Measure Between
Attributed Relational Graphs for Pattern Recognition. |EEE
Trans. on SMC, vol. 13, no. 3. May/June 1983.

[3] H. Bunke, Error Correcting Graph Matching: On the
Influence of the Underlying Cost Function, |EEE Trans. on
PAMI, val. 21, no. 9. Sept. 1999.

[4] JR. Ullman, An agorithm for subgraph isomorphism,
Journal of the ACM, vol. 23, no. 1, January 1976, pp. 31-
42,

[5] B.T.Messmer. Efficient Graph Matching Algorithms for
Preprocessed Model Graphs, Thesis. University of Bern,
1996 http://citeseer.nj.nec.com/114601.html

[6] A. Hlaoui and S. Wang. Image Retrieva Systems Using
Graph Matching. Rapport de Recherche, No. 275,
Département de mathématiques et d’informatique,
Univérsité de Sherbrooke, 2001.

