Introduction to Computer Science - Exam 2

Mission Brief: Welcome, Agent! You have been recruited by the Cyber Defense League to test your skills in a series of challenges. Your mission is to navigate through different levels of cybersecurity threats and secure the system. Earn points for correct answers, unlock achievements, and prove your prowess as a white hat hacker.

Achievements:

- Quick Thinker: Answer all Level 1 questions correctly within 5 minutes.
- Data Guru: Score at least 40 points in Level 2.
- Algorithm Master: Score at least 60 points in Level 3.

Hints:

- **Hint for Level 1:** Remember the basic principles of programming.
- Hint for Level 2: Think about the efficiency of accessing elements.
- **Hint for Level 3:** Consider the purpose and efficiency of algorithms.

Scoring:

• Total Points: 100

• Achievements: 30 points each

Good luck, Agent! The Cyber Defense League is counting on you to secure the system and protect our digital world.

Level 1: Key Concepts (10 points)

Scenario: You have infiltrated a suspicious network. To proceed, you need to bypass the initial security checks by answering these questions.

1. **Question:** What is the primary function of an algorithm?

o **A:** To store data

Scenario: You've successfully bypassed the initial security. Now, you need to navigate through the data storage systems to find the hidden vulnerabilities.

throug	the d	ata storage systems to find the hidden vulnerabilities.
1.	Question: What is the time complexity of accessing an element in an array?	
	0	A: O(n)
	0	B: O(log n)
	0	C: O(1)
	0	D: O(n^2)
2.	Quest	ion: Which data structure uses the Last In, First Out (LIFO) principle?
	0	A: Queue
	0	B: Stack
	0	C: Linked List
	0	D: Tree
3.	Question: What is a linked list?	
	0	A: A collection of nodes where each node points to the next node
	0	B: A collection of elements stored in contiguous memory locations
	0	C: A hierarchical structure with a root node
	0	D: A collection of key-value pairs
4.	Quest	ion: Which of the following is a non-linear data structure?
	0	A: Array
	0	B: Linked List
	0	C: Stack
	0	D: Tree
5.	Quest	ion: What is the primary advantage of using a hash table?
	0	A: Fast insertion and retrieval
	0	B: Easy to implement
	0	C: Uses less memory

D: Maintains order of elements

Level 3: Algorithms (30 points)

Scenario: You've reached the core of the system. To secure it, you must optimize the algorithms to prevent future breaches.

- 1. **Question:** What is the purpose of the binary search algorithm?
 - A: To sort an array
 - B: To search for an element in a sorted array
 - C: To merge two arrays
 - o **D:** To find the maximum element in an array

Analysis: Why are the incorrect responses incorrect?

- 2. Question: Which sorting algorithm has the best average-case time complexity?
 - o **A:** Bubble Sort
 - o **B:** Insertion Sort
 - o **C:** Merge Sort
 - D: Selection Sort

Rationale: Justify your response.

- 3. **Question:** What is the time complexity of the Quick Sort algorithm in the average case?
 - o **A:** O(n)
 - B: O(n log n)
 - o **C:** O(n^2)
 - D: O(log n)

Analysis: Why is this the case and what would the case be in a worst-case scenario?

- 4. Question: Which algorithm is used to find the shortest path in a graph?
 - A: Depth-First Search

- o **B:** Breadth-First Search
- o **C:** Dijkstra's Algorithm
- o **D:** Kruskal's Algorithm

Description: Provide an explanation of this algorithm and why it works for this scenario.

- 5. **Question:** What is the main advantage of the Merge Sort algorithm?
 - o **A:** It is easy to implement
 - \circ **B:** It has a stable time complexity of O(n log n)
 - o **C:** It uses less memory
 - o **D:** It is faster than Quick Sort

Analysis: What are the biggest disadvantages of Merge Sort?