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OPTIMIZING CLINICAL DECISION SUPPORT FOR PHARMACISTS

q The results section is  only an excerpt from numerous reports.
q A closer review of of the rules and interventions that fired and feedback 

received from clinical pharmacists nationwide indicated that 14%  of the 
alerts can be eliminated.

q Feedback also suggested review and evaluation of a total of 41% 
additional alerts.

RESULTS DISCUSSION

q Clinical decision support enhances the quality of care by presenting the 
most pertinent evidence-based information to the physician at the point 
of care. 

q Many studies demonstrate the effectiveness of implementing clinical 
decision support systems, but there is little research in the optimization 
of clinical decision support rules after the initial go-live.

q Without significant study of workflow processes and alert usability, 
clinical decision support performance and reliability by end-users wane 
over time. 

q Clinical decision support data from the prospective pharmacy clinical 
surveillance system was harvested for the month of July 2020 from 70 
hospitals in a large national health-system. 

q The data included the facility, alert, alert priority, total number of 
patients, number of patients assessed by a pharmacist, number of 
interventions documented by a pharmacist, median response time of 
the interventions, time from alert firing to intervention, duration that 
each alert was true, and number of alert firings per patient for each 
rule.

q The data points were used to identify trends that indicated instances 
where performance of alerts was suboptimal.

q Data was presented at national clinical pharmacy leadership committee 
meetings for review and evaluation.

q Collect clinical decision support system alert and intervention data and 
examine the potential for identifying suboptimal rule logic and methods 
for optimization. 

q Investigate methods to proactively reduce alert fatigue and enhance 
optimization techniques. 

q Improve clinical decision support for pharmacists and ultimately improve 
patient care. 

OBJECTIVES
q The rules associated with higher mean percentages of patients assessed 

may be associated with higher efficiency in rule logic and workflow 
processes. 

q Rules that fired multiple times per patient triggered further review. 
q This method of data analysis provided a wealth of information that will 

allow for the implementation of a wide variety of rule optimization 
strategies and potential to increase the quality of care on a large scale.

q Ongoing significant review of rule and intervention of performance 
metrics  can  reduce alert fatigue , improve patient safety, and enhance 
workflow for pharmacists. 

CONCLUSION
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MEAN PERCENTAGE OF PATIENTS ADDRESSED

MEAN NUMBER OF ALERTS PER PATIENT

NUMBER OF RULE FIRINGS

Rule Sum of Qualifying Patients Sum of Patients Addressed Mean % of Patients Addressed
No VTE Prophylaxis 1950 215 13.37%
Blood Sugar >250 1329 138 14.28%
Renal Dosing - Piperacillin/Tazobactam 1324 613 42.19%

Heart Failure Identification with BNP/NT-proBNP 1968 934 44.45%

COVID-19 Positive Test (Pharmacy) 4763 2298 44.98%
Initiative - IV Corticosteroids 2430 1141 45.73%
Open interventions 14078 6752 48.55%
IV to PO Azithromycin 1426 829 49.85%

Rule Number of Alerts Number of Patients Mean # Alerts per Pt 
Heart Failure Identification with NT-proBNP 5378 418 12.86602871
Initiative - Albumin Assessment 3354 808 4.150990099
Renal Dosing - Piperacillin/Tazobactam Not Extended Infusion 575 150 3.833333333
All Warfarin patients - ININD 877 240 3.654166667
Positive cultures @ 7 days (sterile sites) Copy 1713 502 3.412350598
Vancomycin Monitoring (All patients) Copy 7053 2078 3.39412897
Initiative - TPN Assessment 2433 722 3.369806094
All warfarin patients 4059 1241 3.270749396
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Rule Number of Rule Firings 
Open interventions 14078
Vancomycin Monitoring (All patients) 6635
IV to PO Famotidine 4856
COVID-19 Positive Test (Pharmacy) 4763
IV to PO Pantoprazole 3993
Enoxaparin Therapeutic Monitoring 3841
Initiative - IV Corticosteroids 2430
Renal Dosing - Enoxaparin 2228
Broad Spectrum Beta-Lactam Review at 72 hr 2064
Vancomycin Monitoring (All patients) Copy 2058
Procalcitonin De-escalation 2053
Risk for Oversedation 1984
Heart Failure Identification with BNP/NT-proBNP 1968

Rule Number of Rule Firings 
Renal Dosing - Famotidine 1964
No VTE Prophylaxis 1950
Positive cultures @ 72 hours (sterile sites) 1918
Renal Dosing - Cefepime 1862
Heparin Therapeutic monitoring 1840
IV to PO Metronidazole 1730
Heparin Therapeutic monitoring* 1539
COVID-19 Medication Rule 1454
IV to PO Azithromycin 1426
Blood Sugar >250 1329
Renal Dosing - Piperacillin/Tazobactam 1324
All warfarin patients 1266
Renal Dosing - Apixaban 1250

https://www.healthit.gov/sites/default/files/2017-09/advancedinteroperablehie-foa.pdf
https://www.ashp.org/-/media/assets/policy-guidelines/docs/statements/pharmacists-role-clinical-informatics.ashx

