SOUTHERN ILLINOIS UNIVERSITY EDWARDSVILLE

BACKGROUND

- Traditional testing of blood cultures is time consuming and can take day results which increases the duration of broad antibiotic therapy and lead overuse of antibiotics.
- According to the Infectious Disease Society of America guidelines for implementing an antibiotic stewardship program, it is suggested that use rapid diagnostic testing in addition to conventional blood cultures and ra notification of results has been associated with significant improvement
- BioFire Blood Culture Identification 2 (BCID2) Panel is a multiplex polymerase chain reaction (PCR) test that simultaneously can detect 43 common targets and pathogens associated with blood stream infections 99% sensitivity and 99.8% specificity.²

OBJECTIVES

- To evaluate the advantages of using the BCID2 Panel for rapid identification of blood pathogens compared to traditional blood culture testing.
- Assess the impact of having a pharmacist-driven protocol where the pharmacist is contacted with initial results of rapid blood culture testing can make appropriate antibiotic recommendations based on the results.

METHODS

Study Design

- Single-center, retrospective chart review at HSHS St. Elizabeth's Hospi O'Fallon, IL
- Approved by Southern Illinois University institutional review board
- Data was collected from hospital electronic medical records and protect health information was not documented in the data collection sheet

Inclusion

- 18-89 years old
- Hospitalized with positive blood cultures between October to December 2023 and March to May of 2024

Exclusion

- Emergency department (ED) visit only
- Presented to ED, then later called back for admission due to positive blo culture results
- No BioFire Panel completed with the post group (March to May 2024)

Primary Outcome

• Time to antibiotic de-escalation comparing pre and post BioFire BCID2 implementation – analysis limited to cases when de-escalation is possib

Secondary Outcomes

• Time from initial positive blood culture to de-escalation, antibiotic durations, frequency of pharmacist interventions, hospital LOS, 30-day all cause mortality

Data Analysis

• Descriptive statistics, independent t-test, and chi-squared test

Impact of a Rapid Multiplex Polymerase Chain Reaction Blood Culture Identification Panel and a Pharmacist-driven Protocol on Antibiotic Management Breah Morlan¹, PharmD Candidate and Jared Sheley^{1,2}, PharmD, BCPS 1. Southern Illinois University Edwardsville School of Pharmacy 2. HSHS St. Elizabeth's Hospital

ys for	Patient Characteristics (n=286)				
ds to	Characteristics		Pre-BCID2 (n=151)	Post-BCID2 (n=135)	
	Age in years, median		66 (19-89)	68 (19-89)	
e e f		Urinary	40 (26.5)	40 (29.6)	
		Respiratory	24 (15.9)	28 (20.7)	
ts. ¹	Suspected infection source, N (%)	Skin and soft tissue	30 (19.9)	26 (19.3)	
		Gastrointestinal	19 (12.6)	13 (9.6)	
		Other	38 (25.2)	28 (20.7)	
with a		Gram + organisms	107 (70.9)	86 (63.7)	
with a		Staphylococcus spp. (not aureus)	44 (29.1)	40 (29.6)	
		Staphylococcus aureus	20 (13.3)	19 (14.1)	
		Streptococcus spp.	22 (14.6)	8 (5.9)	
cation		Enterococcus spp.	4 (2.7)	3 (2.2)	
		Micrococcus spp.	3 (2.0)	3 (2.2)	
-	Pathogen, N (%)	Multiple gram + organisms present	7 (4.6)	6 (4.4)	
g and		Other	7 (4.6)	7 (5.2)	
		Methicillin resistance	9 (8.4)	26 (30.2)	
		Gram – organisms	44 (29.1)	47 (34.8)	
		Escherichia coli	22 (14.6)	23 (17.0)	
		Klebsiella pneumonia	5 (3.3)	4 (3.0)	
		Pseudomonas aeruginosa	1 (0.7)	4 (3.0)	
ital in		Other	16 (10.6)	16 (11.9)	
		ESBL	5 (11.4)	7 (14.9)	
		Yeasts	0 (0)	2 (1.5)	
ted	Primary Ou	itcome: Average Time to A p-value <0	ntibiotic De-escalatio .001	n (hours),	
2	60				
er of	51.9 (n=43)				
	50				
ood	40				
	30		25.2 (n=34)		
2 Panel ole	20				
tiona	10				

Pre-BCID2

RESULTS

Primary Outcome						
	Pre-BCID2 (n=151)	Post-BCID2 (n=135)	p-value			
Time to de-escalation, average (hours)	51.9 (n=43)	25.2 (n=34)	< 0.001			
Secondary Outcomes						
Time from initial + blood culture result to de-escalation, average (hours)	43.7 (n=43)	11.2 (n=34)	< 0.001			
Duration of broad-spectrum antibiotics, average (hours)	143.2	147.2	0.879			
Duration of IV antibiotics, average (hours)	168.7	186.8	0.419			
Duration of total antibiotics, average (hours)	174.5	193.4	0.429			
Length of hospital stay, average (days)	7.9	9.5	0.069			
Frequency of possibility to de-escalate antibiotics, N (%)	44 (29.1)	36 (26.7)	0.216			
Frequency of necessity to escalate antibiotics, N (%)	12 (7.9)	22 (16.3)	0.0294			
Amount of times pharmacy interventions made total, N (%)	15 (9.9)	50 (37.0)	< 0.001			
Amount of pharmacy attempt interventions total, N (%)	17 (11.3)	54 (40.0)	< 0.001			
Amount of times pharmacy de-escalation interventions, N (%)	13 (8.6)	28 (20.7)	0.004			
Amount of times pharmacy escalation interventions, N (%)	2 (1.3)	22 (16.3)	< 0.001			
30-day all-cause mortality, N (%)	18 (11.9)	14 (10.4)	0.711			

Limitations

- could be adjusted
- Single-center, retrospective design

Conclusion

- Implementation of the BCID2 Panel plus a pharmacist-driven protocol to adjust antibiotic regimens significantly improved the time to de-escalation of antibiotics by cutting the time in half
- In addition, this protocol allowed pharmacists to recommend appropriate interventions for escalation of antibiotic therapy when necessary for a patient
- doi:10.1093/cid/ciw118
- 2. BIOFIRE® Blood Culture Identification 2 panel. bioMérieux Website. Accessed August 22, 2024.

School of Pharmacy

DISCUSSION

• Longer durations of broad antibiotic therapy were continued in some cases due to patients having multiple suspected infections which could explain the increased durations for antibiotic therapy in both groups • In each group, there were some patients who expired before the final culture results were released and antibiotics

• Although BCID2 Panel tests for most common pathogens, there are still some pathogens that the panel cannot detect

• The use of this process can help improve antimicrobial stewardship, resource utilization, and patient outcomes

R D D D R D N C E S

1. Barlam TF, Cosgrove SE, Abbo LM, et al. Implementing an Antibiotic Stewardship Program: Guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. *Clin Infect Dis.* 2016;62(10):e51-e77.

https://www.biomerieux.com/us/en/our-offer/clinical-products/biofire-blood-culture-identification-2-panel.html.