### **SOUTHERN ILLINOIS UNIVERSITY** EDWARDSVILLE

**SCHOOL OF PHARMACY** 

## BACKGROUND

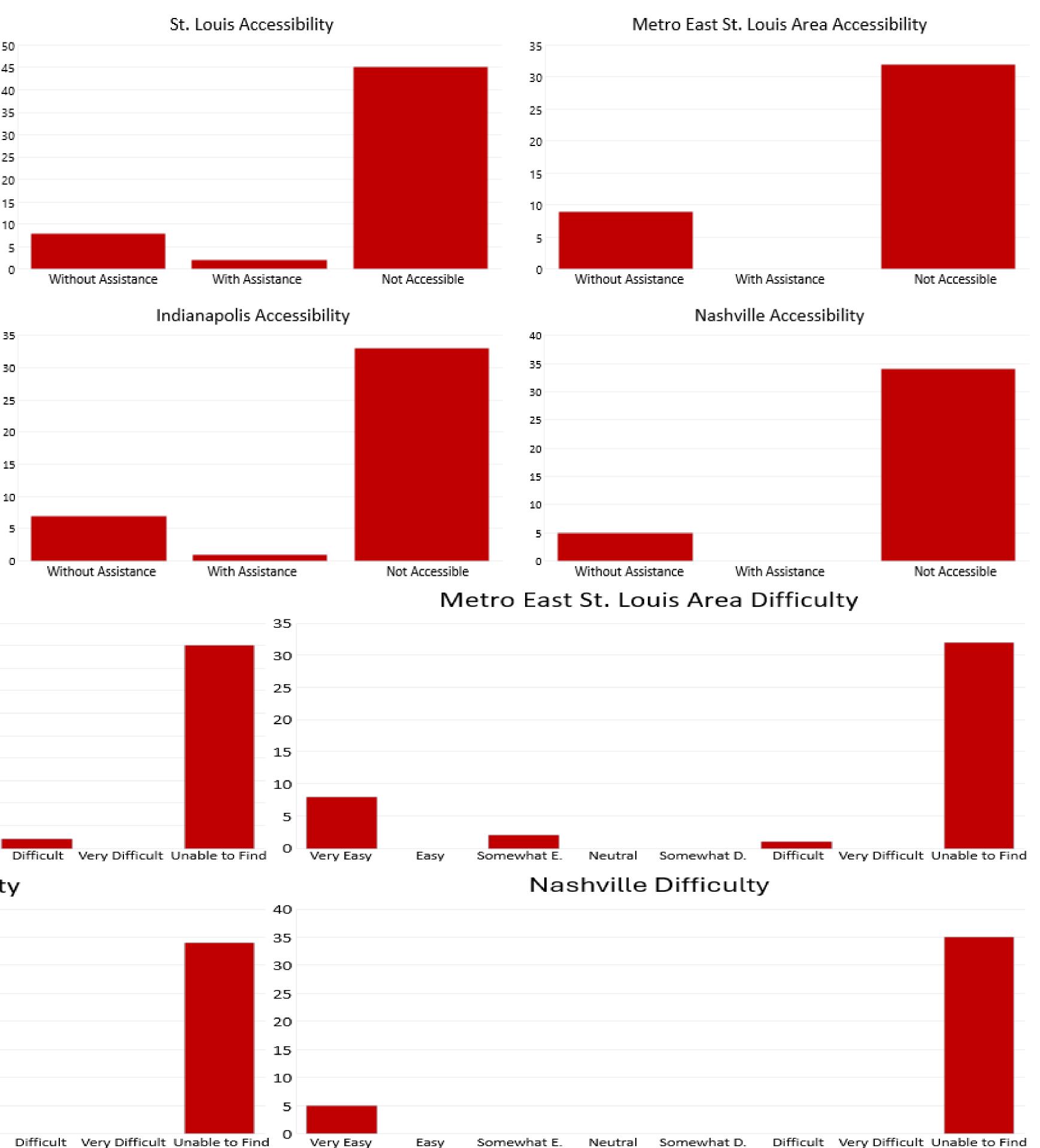
- Outside-of-hospital cardiac arrest (OHCA) has a survival rate of 10.7%, with approximately 357,000 EMS-assessed OHCA events occurring annually in the U.S.
- High-quality CPR and early defibrillation are the standard care for OHCA; publicly available automatic external defibrillators (AEDs) are crucial for the bystander response to an OHCA prior to EMS arrival
- However, bystander AED application and rates of defibrillation remain low

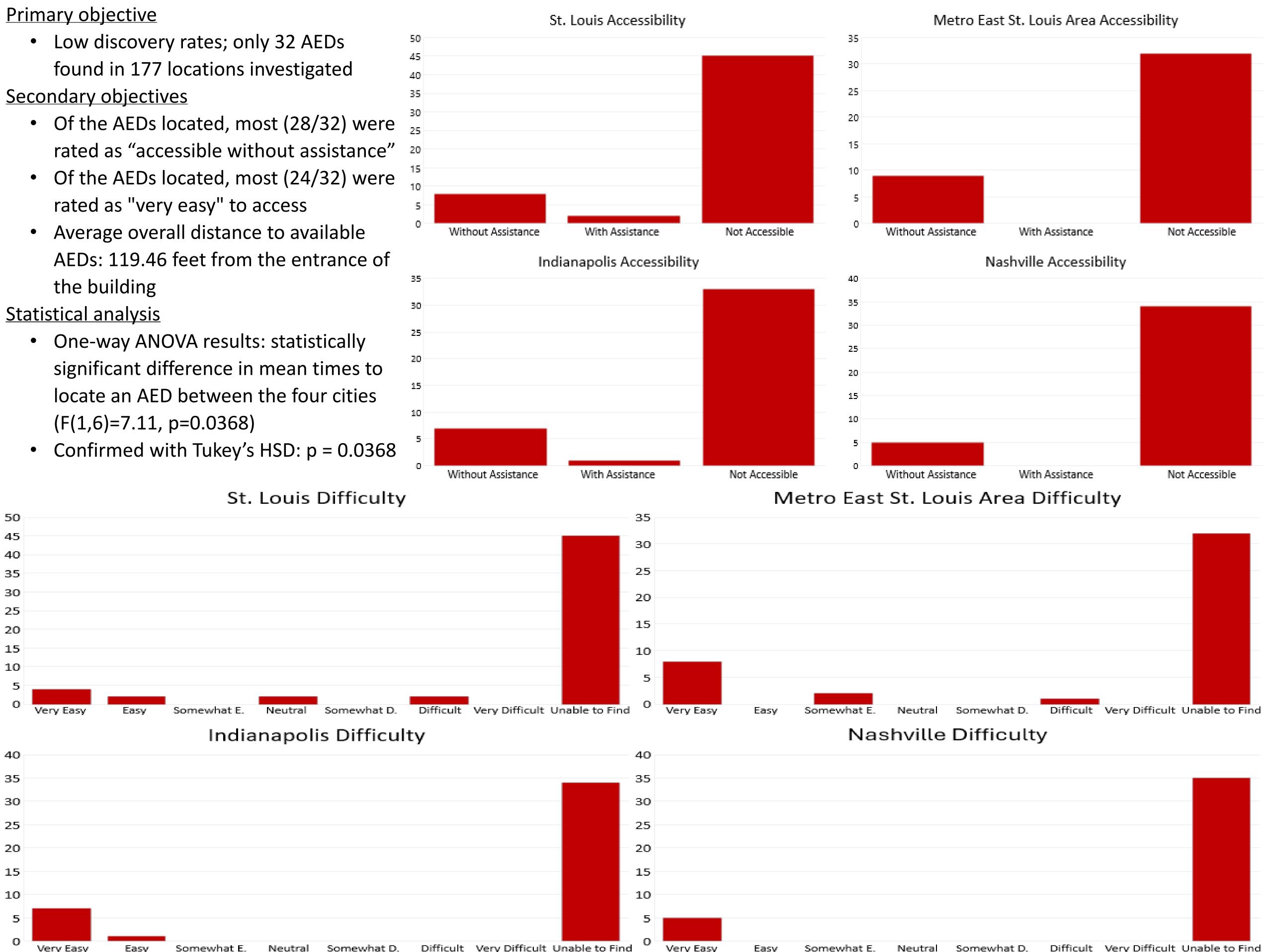
## **OBJECTIVES**

- Primary: measure the mean time it takes to locate an AED by ambulation in a community setting
- Secondary: rating the difficulty of finding each AED, their accessibility, and reporting the distance from the entrance

### METHODS

### <u>Study Design</u>


- Quantitative study
- Four Midwest cities: St. Louis, MO, Metro East St. Louis, IL, Indianapolis, IN, and Nashville, TN
- Four categories of locations: retail stores, stand-alone retail pharmacies (front store + visible pharmacy area), fast food restaurants, and grocery stores
- Data collection took place between 8/19/24-11/7/24 between 1200-1700 hours on any day of the week by a sole collector
- Likert scales were used to assess the difficulty of finding each AED and their accessibility
- Accessibility scale: 3-point scale from accessible with assistance, accessible without assistance, or inaccessible
- Difficult scale: 8-point scale from very easy to unable to find Study Sample
- Sample size: minimum of 40 stores per city, with a total of 10 stores in each of four pre-determined categories
- Exclusion criteria: locations that the researcher does not have membership to, require assistance, purchase of a ticket, or permission to enter, banks, and locations unique to a single city Study Outcomes
- Mean time, distance, difficulty of finding the AED, and accessibility of each AED were all assessed
- Statistical Analysis
- Hypothesis: there is a statistically significant difference in the mean time to find an AED among the cities compared, with at least one city's mean time differing from the others
- Statistical test: one-way analysis of variance (ANOVA) followed by a post-hoc analysis using Tukey's Honest Significant Difference (HSD)


# **Evaluating the Accessibility of Automated External** Defibrillators (AEDs) in a Community Setting Kaitlyn Rogers, PharmD Candidate & Cassandra Maynard, PharmD, BCPS

found in 177 locations investigated

- rated as "very easy" to access
- the building

- locate an AED between the four cities (F(1,6)=7.11, p=0.0368)





|   |           | Nı   | ımbe |
|---|-----------|------|------|
|   | Very Easy | Easy | Som  |
| 5 |           |      |      |
| ) |           |      |      |
|   |           |      |      |

Somewhat D. Neutral

| AEDs Found per Category |               |            |  |  |  |  |
|-------------------------|---------------|------------|--|--|--|--|
| Metro East              | Indianapolis, | Nashville, |  |  |  |  |
| St Louis II             | INI           | TN         |  |  |  |  |

|                         | St. Louis, | Metro East    | Indianapolis, | Nashville, |
|-------------------------|------------|---------------|---------------|------------|
|                         | MO         | St. Louis, IL | IN            | TN         |
| Found/Total<br>Searched | 15/54      | 9/42          | 8/41          | 5/40       |
| Retail                  | 8/15       | 5/9           | 7/8           | 5/5        |
| Fast Food               | 0          | 0             | 0             | 0          |
| Pharmacy                | 0          | 0             | 0             | 0          |
| Grocery                 | 7/15       | 4/9           | 1/8           | 0/5        |

### RESULTS

|                                                    | iciy cosy cosy              | oomernate.       | iteration contentation.     | enneare very ennee  |                  |
|----------------------------------------------------|-----------------------------|------------------|-----------------------------|---------------------|------------------|
|                                                    |                             | St. Louis,<br>MO | Metro East<br>St. Louis, IL | Indianapolis,<br>IN | Nashville,<br>TN |
|                                                    | Overall mean<br>time to AED | 113.4<br>seconds | 43.4 seconds                | 34.4 seconds        | 29.2<br>seconds  |
| Mean Time to AED by Category of Store (in seconds) |                             |                  |                             |                     | ids)             |
|                                                    | Retail                      | 86.3             | 33.4                        | 35.8                | 29.2             |
|                                                    | Fast Food                   | N/A*             | N/A*                        | N/A*                | N/A*             |
|                                                    | Pharmacy                    | N/A*             | N/A*                        | N/A*                | N/A*             |
|                                                    | Grocery                     | 125              | 55.7                        | 24                  | N/A              |

\*No AEDs located; no mean time could be calculated

### **SOUTHERN ILLINOIS UNIVERSITY** EDWARDSVILLE

SCHOOL OF PHARMACY

## CONCLUSION

- The difference between the mean times to find an AED in each city was statistically significant (p < 0.05)
- The mean times to find an AED for all cities and categories of locations are all less than two minutes from the entrance of the buildings
- AEDs that are available are predominately accessible to the public without assistance and very easy to find
- AED availability is low overall, with retail pharmacies and fastfood restaurants lacking AEDs in all instances
- Grocery stores and retail stores had the most AEDs
- The average distance to an AED was 119.46 feet
- These findings suggest that the time to locate an AED is influenced by the city in which a search is conducted, warranting further investigation into the underlying reasons for these differences

## LIMITATIONS

- Unknown effect of how bystander or employee assistance would impact the length of time to find an AED
- Data collector is in the healthcare profession and therefore may have more knowledge of what an AED is and how to find one in a public setting
- Concern that the data collector improved in the ability to find an AED based on the repetition of the activity over the study period
- Small sample size compared to available community settings and cities in the United States

## APPLICATION

Scan QR code below to see an outline of a plan to create a mobile application to locate nearby AEDs for bystanders that witness an OHCA



### REFERENCES

• Berg, K. M., Cheng, A., Panchal, A. R., Topjian, A. A., Aziz, K., Bhanji, F., Bigham, B. L., Hirsch, K. G., Hoover, A. V., Kurz, M. C., Levy, A., Lin, Y., Magid, D. J., Mahgoub, M., Peberdy, M. A., Rodriguez, A. J., Sasson, C., Lavonas, E. J., & On behalf of the Adult Basic and Advanced Life Support, Pediatric Basic and Advanced Life Support, Neonatal Life Support, and Resuscitation Education Science Writing Groups. (2020). Part 7: Systems of Care: 2020 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation, 142(16 suppl 2). • Cardiac Arrest - What Is Cardiac Arrest? | NHLBI, NIH. (2022, May 19). • Kitamura, T., Kiyohara, K., Sakai, T., Matsuyama, T., Hatakeyama, T., Shimamoto, T., Izawa, J., Fujii, T., Nishiyama, C., Kawamura, T., & Iwami, T. (2016). Public-Access Defibrillation and Out-of-Hospital Cardiac Arrest in Japan. New England Journal of Medicine, 375(17), 1649–1659. • Kragholm, K., Wissenberg, M., Mortensen, R. N., Hansen, S. M., Malta Hansen, C., Thorsteinsson, K., Rajan, S., Lippert, F., Folke, F., Gislason, G., Køber, L., Fonager, K., Jensen, S. E., Gerds, T. A., Torp-Pedersen, C., & Rasmussen, B. S. (2017). Bystander Efforts and 1-Year Outcomes in Out-of-Hospital Cardiac Arrest. New England Journal of Medicine, 376(18), 1737–1747. • Leung, A. C., Asch, D. A., Lozada, K. N., Saynisch, O. B., Asch, J. M., Becker, N., Griffis, H. M., Shofer, F., Hershey, J. C., Hill, S., Branas, C. C., Nichol, G., Becker, L. B., & Merchant, R. M. (2013). Where are lifesaving automated external defibrillators located and how hard is it to find them in a large urban city? Resuscitation, 84(7), 910–914. Martin, S. S., Aday, A. W., Almarzoog, Z. I., Anderson, C. A. M., Arora, P., Avery, C. L., Baker-Smith, C. M., Barone Gibbs, B., Beaton, A. Z., Boehme, A. K., Commodore-Mensah, Y., Currie, M. E., Elkind, M. S. V., Evenson, K. R., Generoso, G., Heard, D. G., Hiremath, S., Johansen, M. C., Kalani, R., ... on behalf of the American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. (2024). 2024 Heart Disease and Stroke Statistics: A Report of US and Global Data From the American Heart Association. *Circulation*, 149(8). • Pollack, R. A., Brown, S. P., Rea, T., Aufderheide, T., Barbic, D., Buick, J. E., Christenson, J., Idris, A. H., Jasti, J., Kampp, M., Kudenchuk, P., May, S., Muhr, M., Nichol, G., Ornato, J. P., Sopko, G., Vaillancourt, C., Morrison, L Weisfeldt, M., & the ROC Investigators. (2018). Impact of Bystander Automated External Defibrillator Use on Survival and Functional Outcomes in Shockable Observed Public Cardiac Arrests. Circulation, 137(20), 2104– 2113. h • Virani, S. S., Alonso, A., Benjamin, E. J., Bittencourt, M. S., Callaway, C. W., Carson, A. P., Chamberlain, A. M., Chang, A. R., Cheng, S., Delling, F. N., Djousse, L., Elkind, M. S. V., Ferguson, J. F., Fornage, M., Khan, S. S., Kissela, B. M., Knutson, K. L., Kwan, T. W., Lackland, D. T., ... On behalf of the American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. (2020). Heart Disease and Stroke Statistics—2020 Update: A Report From the American Heart Association. *Circulation*, 141(9).

Weisfeldt, M. L., Sitlani, C. M., Ornato, J. P., Rea, T., Aufderheide, T. P., Davis, D., Dreyer, J., Hess, E. P., Jui, J., Maloney, J., Sopko, G., Powell, J., Nichol, G., & Morrison, L. J. (2010). Survival After Application of Automatic External Defibrillators Before Arrival of the Emergency Medical System: Evaluation in the Resuscitation Outcomes Consortium Population of 21 Million. Journal of the American College of Cardiology, 55(16), 1713–1720.