

# Identification of Patient Factors Predictive of Naloxone Prescription: A Retrospective Cohort Study

Riley Skube, PharmD Candidate, Elizabeth Eastman, PharmD Candidate Timothy Cruz PharmD, Christopher Herndon, PharmD, BCACP

# SOUTHERN ILLINOIS UNIVERSITY EDWARDSVILLE SCHOOL OF PHARMACY

# Background

- In 2018 alone, there were a total of 67,367 deaths from drug overdose in the United States with 69.5% of these deaths attributed to opioids.<sup>1</sup>
- The US Department of Health and Human Services recommends naloxone be accessible to all patients at high risk of opioid overdose to reduce overdose deaths.<sup>2</sup>
- Despite increasing rates of naloxone distribution, widespread access to this medication is still lacking.

# Objective

The objective of this study was to elucidate factors predictive of naloxone prescription in a large federally qualified health center (FQHC) to better target educational efforts and reduce barriers to access.

#### Methods

- A retrospective chart review was conducted of all patients prescribed naloxone within a FQHC over a 5-year time period.
  - August 1<sup>st</sup> 2015 August 1<sup>st</sup> 2020
- An initial chart query was performed, and 114 patients were identified as having received naloxone via prescription during this time period.
- A second chart query was performed to identify patients receiving long-term opioid prescriptions and no naloxone during the same time frame.
  - "Long-term" was defined as three or more opioid prescriptions in a rolling 12-month time period.
  - From this sample, 114 patients were randomly selected from the queried charts to serve as comparison to those patients who were prescribed naloxone.
- A chart abstraction was conducted to collect additional patient factors including: race, sex, age, income level, opioid indication, and concurrent co-prescription of benzodiazepines, sleep hypnotics, or skeletal muscle relaxants.
- A binomial logistic regression analysis was performed to ascertain the effects of these patient factors on the likelihood that a patient receiving any opioid over a five-year span would be prescribed naloxone.

#### Results

|                               | Total<br>No. (%) | Naloxone Prescription No. (%) | No Naloxone Prescription No. (%) | Odds Ratio<br>(95% CI) |
|-------------------------------|------------------|-------------------------------|----------------------------------|------------------------|
| <u>Age</u> , Mean (SD)        | 55.1(12.9)       | 51.73 (12.3)                  | 58.48 (12.6)                     | 1.04 (1.02-1.07)       |
| <u>Sex</u>                    | 228              | 114                           | 114                              |                        |
| Male                          | 88 (38.6)        | 48 (21.1)                     | 40 (17.5)                        | 1.60 (0.88-2.91)       |
| Female                        | 140 (61.4)       | 66 (28.9)                     | 74 (32.5)                        | 0.63 (0.34-1.14)       |
| Race / Ethnicity              | 227              | 114                           | 113                              |                        |
| Caucasian                     | 169 (74.4)       | 104 (45.8)                    | 65 (28.6)                        | 7.43 (3.46-15.95)      |
| African American              | 54 (23.8)        | 8 (3.5)                       | 46 (20.3)                        | 0.11 (0.05-0.25)       |
| Other                         | 4 (1.8)          | 2 (0.9)                       | 2 (0.9)                          | _                      |
| Primary Opioid*               | 228              | 114                           | 114                              |                        |
| Buprenorphine                 | 28 (12.3)        | 27 (11.8)                     | 1 (0.4)                          | 20.39 (2.60-159.91)    |
| Hydrocodone                   | 78 (34.2)        | 28 (12.3)                     | 50 (21.9)                        | 0.45 (0.24-0.84)       |
| Tramadol                      | 55 (24.1)        | 4 (1.8)                       | 51 (22.4)                        | 0.04 (0.02-0.13)       |
| Oxycodone                     | 27 (11.8)        | 25 (11.0)                     | 2 (0.9)                          | 32.93 (5.79-187.37)    |
| Morphine                      | 11 (4.8)         | 11 (4.8)                      | 0 (0.0)                          | _                      |
| Fentanyl                      | 7 (3.1)          | 5 (2.2)                       | 2 (0.9)                          | 3.28 (0.37-29.25)      |
| Methadone                     | 3 (1.3)          | 3 (1.3)                       | 0 (0.0)                          | _                      |
| Hydromorphone                 | 5 (2.2)          | 4 (1.8)                       | 1 (0.4)                          | 2.99 (0.31-28.99)      |
| Tapentadol                    | 3 (1.3)          | 3 (1.3)                       | 0 (0.0)                          | _                      |
| Opioid Indication             | 228              | 114                           | 114                              |                        |
| Chronic Pain                  | 198 (86.8)       | 85 (37.3)                     | 113 (49.6)                       | _                      |
| Opioid Use Disorder           | 30 (13.2)        | 29 (12.7)                     | 1 (0.4)                          | 22.71 (2.86-180.53)    |
| <b>Concurrent Medications</b> |                  |                               |                                  |                        |
| Benzodiazepine                | 93 (40.8)        | 52 (22.8)                     | 41 (18.0)                        | 1.22 (0.68-2.19)       |
| Sleep Hypnotic                | 25 (11.0)        | 14 (6.1)                      | 11 (4.8)                         | 0.99 (0.39-2.47)       |
| Skeletal Muscle Relaxant      | 110 (48.2)       | 54 (23.7)                     | 56 (24.6)                        | 0.87 (0.49-1.54)       |
| Income Category               | 227              | 114                           | 113                              |                        |
| 100% and Below                | 122 (53.7)       | 60 (26.4)                     | 62 (27.3)                        | 0.75 (0.42-1.35)       |
| 101-150%                      | 21 (9.3)         | 9 (4.0)                       | 12 (5.3)                         | 0.85 (0.32-2.29)       |
| 151-200%                      | 11 (4.8)         | 7 (3.1)                       | 4 (1.8)                          | 1.57 (0.39-6.28)       |
| Over 200%                     | 21 (9.3)         | 13 (5.7)                      | 8 (3.5)                          | 1.81 (0.66-5.02)       |

<sup>\*</sup> Each primary opioid dummy coded into dichotomous categorical variables and controlled for age, sex, and ethnicity

### Results (continued)

- The model explained 33.3% of the variance in naloxone prescription and correctly classified 70% of the cases.
- Caucasians were significantly more likely to receive naloxone when prescribed an opioid compared to non-Caucasian patients (OR 7.43, 95% CI 3.46-15.95).
- Patients categorized as having opioid use disorder were 22 times more likely to receive a prescription for naloxone compared to patients receiving opioid therapy for a chronic pain indication (OR 22.71, 95% CI 2.86 180.53).
- Patient sex, income level, and concurrent use of non-opioid medications known to increase risk of opioid overdose did not predict receipt of naloxone.
- When primary opioid was modeled buprenorphine and oxycodone were predictive of naloxone prescribing.

#### Conclusion

- These findings suggest there are numerous disparities in terms of naloxone prescribing and significant opportunity for prescriber education.
- Within this study Caucasian patients were more likely to be prescribed naloxone than their non-Caucasian counterparts.
- This highlights a potential heath disparity that exists.
- Patients categorized as having opioid use disorder were 22 times more likely to receive naloxone.
- Patients using for chronic pain are also still at risk.
- Patients concurrently prescribed benzodiazepines, sleep hypnotics, and skeletal muscle relaxants were no more likely to be prescribed naloxone than patients prescribed long-term opioids alone.
- These medications increase the risk of overdose and highlight a need for prescriber intervention.
- In order to reduce barriers to naloxone access for patients these disparities in its prescription should be a focus of future prescriber education efforts.

#### References

- 1. Guy GP, Haegerich TM, Evans ME, Losby JL, Young R, Jones CM. Vital signs: Pharmacy-based naloxone dispensing united states, 2012-2018. MMWR Morb Mortal Wkly Rep. 2019;68(31):679-686. Accessed May 14, 2020. doi: 10.15585/mmwr.mm6831e1.
- 2. Naloxone: The opioid reversal drug that saves lives: How healthcare providers and patients can better utilize this life-saving drug. *U.S. Department of Health and Human Services*. 2018.